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Generation of ultrashort electron bunches by colliding laser pulses
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A proposed laser-plasma-based relativistic electron soifceEsareyet al, Phys. Rev. Lett79, 2682
(1997] using laser-triggered injection of electrons is investigated. The source generates ultrashort electron
bunches by dephasing and trapping background plasma electrons undergoing fluid oscillations in an excited
plasma wake. The plasma electrons are dephased by colliding two counterpropagating laser pulses which
generate a slow phase velocity beat wave. Laser pulse intensity thresholds for trapping and the optimal wake
phase for injection are calculated. Numerical simulations of test particles, with prescribed plasma and laser
fields, are used to verify analytic predictions and to study the longitudinal and transverse dynamics of the
trapped plasma electrons. Simulations indicate that the colliding laser pulse injection scheme has the capability
to produce relativistic femtosecond electron bunches with fractional energy spread of order a few percent and
normalized transverse emittance less than 1 mm mrad using 1 TW injection laser pulses.
[S1063-651%99)04505-5

PACS numbgs): 52.40.NKk, 41.75.Lx, 29.25.Bx

I. INTRODUCTION cited by the injection laser pulse which further complicates
the injection procesf7].
Plasma-based acceleratpis-3] have received much the- Recently a new optical injection scheme was prop¢s¢d

oretical and experimental attention owing to the extremelywhich uses three short laser pulses, namely two low intensity
high longitudinal electric fields that can be excited in ainjection laser pulses and a pump laser pulse for plasma
plasma without the limitations due to breakdown found inwake excitation. The pump laser pulse generates a plasma
conventional accelerators. The characteristic scale length afake through its ponderomotive force, as in the standard
the accelerating fielblasma wakgin a plasma-based accel- laser wake-field acceleratdi3]. The two injection laser
erator is the plasma wavelength, (m)=27c/w,=3.3  pulses, one pulse propagating in the forward direction behind
x10*n; 2 (cm~3), wheren, is the plasma density,is the  the pump laser pulse and the other pulse counterpropagating
speed of light, andv,= (4mn.e’/mg)*? is the plasma fre- to the pump laser pulse, collide at a predetermined phase of
quency with m, the electron mass ane-e the electron the plasma wake. During this collision, the beating of the
charge. In such short wavelength accelerattypically A, injection laser pulses generates a beat wave that kicks a sub-
<100 wm), production of electron beams with low momen- set of the background plasma electrons. Under appropriate
tum spread and good pulse-to-pulse energy stability require@onditions, described in this paper, some of the background
femtosecond electron bunches to be injected with femtosedlasma electrons attain sufficient momentum and phase shift
ond synchronization with respect to the plasma wake. A0 be trapped by the plasma wake.
though conventional electron sourdgghotocathode or ther- ~ The trapping mechanism of this colliding laser pulse
mionic RF guny have achieved subpicosecond electronscheme is somewhat analogous to the self-trapping process
buncheg4], the requirements for injection into plasma-basedthat can occur in the self-modulated laser wake-field accel-
accelerators are currently beyond the performance of thesfator[8]. Self-trapped electrons with energies as high as 100
conventional electron sources. MeV have been observed in recent experimgts13). In
Optical injection schemes which rely on laser triggeredaddition to producing a large wake field via self-modulation,
injection of plasma electrons into a plasma wake have bee@ long pulse laserl(>\,, whereL is the laser pulse length
proposed5,6] to generate the required femtosecond electrorflecays into Raman backscattered light and a plasma wave
bunches. One methdd,7] utilizes two laser pulses which [3]. The backscattered light can beat with the pump pulse,
propagate perpendicular to one another. Onjection) laser ~ generating a slow phase velocity beat wave, and accelerating
pulse intersects the plasma wake generated by the othbackground plasma electrons to sufficient energies so as to
(drive) laser pulse. The ponderomotive force due to the transbe trapped by the plasma wal®]. The drawback of using
verse gradient in the laser intensity of the injection laserself-modulation of the pump pulse as an electron source is
pulse accelerates a fraction of the plasma electrons and ahat it produces electron bunches with near 100% energy
lows them to be trapped by the plasma wake. One disadvarspread. This is the case since the slow beat wave is not
tage of this method of dephasing background electrons is thiecalized with respect to the phase of the plasma waee
high laser intensities ¥ 10'® W/cn?) required in the two the beat wave extends over distances much larger than the
laser pulses. Consequently, large space charge waves are @lasma wavelengih Furthermore, self-modulation relies on
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instabilities, i.e., trapping and acceleration occur in an un- fg
controlled manner. 0 TR T —
The colliding laser pulse schenfig] has the potential to A5 14 W32l
. . ['4 ['4
produce femtosecond electron bunches with low fractional
energy spreads «1%) using relatively low injection FIG. 2. Electron distribution in longitudinal phase spageu(,)

laser pulse intensities compared to the pump lase(a) before the collision of injection laser pulsest=36), (b) dur-
pulse aﬁ]-<a§ump~1, where a=eA/mc=8.5x10"1° ing the collision of injection laser pulsesoft=39), (c) just after
[A(em)][I 1/2(chrr12)] is the normalized vector potential, the collision (,t="50), and(d) an energetic electron beam much
is the laser pulse intensity, and is the laser wavelength. after the collision (upt=150)._ Thg s_epar_atrix between trapped and
Note that sinc& <\, for the three laser pulses considered inUntrapped plasma wake orbitsolid line) is shown.

this scheme, Raman instabilities will be suppressed. The col-

liding pulse concept also offers detailed control of the injec-S"¢® is Ak=k, —kp=2ko with k;=[k;|=ko. During the

tion process. The injection phase is determined by the reldiMe when the two injection laser pulses overlap, the slow
tive timing between the forward propagating injection laser?€at Wave injects plasma electrons into the fast plasma wake
pulse and the pump laser pulse. The beat wave phase veldiQ! acceleration to high energies. o
ity is adjusted by varying the frequency detuning between A_n exe_tmplg of the C.Oll'd'ng 'ase'.‘ DUISQ Injection process
the injection laser pulses, and the number of trapped eled® given in Fig. ,2' Wh'Ch shows S'mU|at'0n, r.e_sults O.f the
trons can be controlled by the injection laser pulse intensitie§V0!ution in longitudinal phase space of an initially uniform
and durations. segment of elecf[r(_)ns_as they interact Wlt_h t_he plasma wake
In this paper we systematically explore the colliding laser®d the beating injection laser pulses. This figure was gener-
pulse optical injection scheme. In Sec. Il we calculate the?t€d using a particle transport code described in Sec. lil.
threshold laser pulse amplitudes and the optimal injectio Iso shown is the separatrigolid line) between the trapped

wake phase for trapping using a Hamiltonian approach. i/@nd untrapped orbits of the plasma wake Hamiltonian. Figure

Sec. lll we present numerical simulation results from athree-zhsr_‘c’_Ws _thelelectror; distributio@) bef(()jre :)he ?OPI]I'S'O'” of
dimensional particle transport code which verify the analytictN€ injection laser pulse an untrapped orbit of the plasma
ke, (b) during the collision of the injection laser pulses

predictions and are used to characterize the dynamics a . . . L
quality of the generated electron bunches. Conclusions arg"Ssing the wake separatrix(c) just after the collision
0.07 mm of propagation after the collisipnand (d) the

offered in Sec. IV. A calculation of the trapping volume is . ! .
presented in Appendix A and in Appendix B we calculate the€Sulting energetic electron bun¢fi.7 mm of propagation

longitudinal dynamics of the trapped electron bunches.  &fter the collision

Il. PHASE SPACE ANALYSIS A. Plasma wake Hamiltonian

h liding | | ical iniecti h The colliding laser pulse injection mechanism can be
The colliding laser pulse optical injection scheme em-gy jieq ysing a Hamiltonian approach. The electron motion

ploys three short laser pulses as shown in Fig. 1: an intensg a one-dimensionallD) plasma wake is described by the
(agsl) laser pulse(denoted by subscript)Ofor plasma Hamiltonian[ 14]

wake generation, a forward propagating injection laser pulse

(subscript 1, and a backward propagating injection laser H(u,,y)=[1+ ui]l’z— B, — (), (D)
pulse(subscript 2. The pump laser pulse generates a plasma

wake with phase velocity near the speed of light=c. The ~ whereu,mcC is the electron axial momentum ang, is the
injection laser pulses collide some distance behind the pumplasma wake phase velocity, which is near the group velocity
laser pulse. When the injection laser pulses collide, they gersf the pump laser pulse;=cg, . The scalar potential of the
erate a beat wave with a phase velocity=Aw/Ak  plasma wake is assumed to have the fapy) = ¢, cosy,
=Aw/2k,, where the frequency difference of the injection where the wake phasezi/b“—wp(B;lz/c—t) and the normal-
laser pulses i\w=w;—w, and the wave-number differ- ized wake potential amplitude i$,=e®,/m.c?. The am-
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plitude of the wake potential is determined by the pump laser €=0
pulse amplitude and shape. The normalized axial momentum 0.5 /\_/
of the electron in an orbitd = const of the plasma wake is 0.25/_\_/
0
U= B, Yol H+ ¢(h)]= y (Vi H+ ()]*- 1112 (2) U, 4o
wherey, = (1—82) Y2 The boundary between trapped and 03
untrapped orbits is given by the separatrix ofdit=H (u, ”'75v
=YBy h=m)= y;1+ ¢o- Assuming the plasma is ini- B
tially cold, the background electron fluid motion in the 65 43210

plasma wake is defined by the orblt=1. Vs
The 1D Hamiltonian Eq(1) neglects the effects of trans-
verse focusing. A three-dimension@D) plasma wake will

have a periodic radial field which is/2 out of phase with <0
the accelerating field. Therefore there exists/4 region in 05 _/—\_/
wake phase where the fields due to the plasma wake are both 0.25
focusing and accelerating. For an electron to be trapped and u 0
remain in this region where the transverse electric field due 7 -0.25
to the plasma wake will provide a focusing force, it must be 0.5
in an orbit defined byH<H(u,=y,8,.¢=m2)=v," . -o.7sv
-1
B. Beat wave Hamiltonian 6 5 4 3 -2-10
The colliding injection laser pulses lead to the formation Vs

of a beat wave with phase space buckgtsparatricesof
width 277/Ak=X\,/2 (much shorter than those of the wake (4,u) due to the presence of the plasma wake

field A, i.e., \g<\ is assumeld The motion of the elec- _gE (4 y/(m.c2Ak). With e<0, the buckets open to the right
tron in the beat wave is described by the beat wave Hamily|jowing electrons moving along untrapped orbits to be trapped by

tonian the plasma wake.
Ho (U, ) =[ £ (45) + UZ]2= By, &)

where Bp=Aw/cAk=(A,—N\1)/(Ao+\q) IS the beat wave

FIG. 3. Distortion of the beat wave orbits in phase space

a plasma electron through a single period of the plasma
wake. Therefore, on the time scale in which a single electron
phase velocity g, = Ak(z— Byct) is the beat wave phase, interacts with a beat wave orbit, it can be assumed that the
5 Ro ag  ala ey o electron experiences a constant electric field from the plasma
and v (p) =1+ai+a;+2a,8, cosyp with a; anda; the ke The effect of the plasma wake electric field on the
slowly varying amplitudes of the forward and backward in- phase space orbits is to distort the beat wave orbits.
jection laser pulses averaged over the rapid phase oscilla- pApout a single period of the beat wave, the plasma wake
tions. The separatrix orbit in phase space of the beat wavgigctric field E,= —(m.c?/e)(d/dz) ¢ can be approximated
Hamiltonia? has the Va'“Hb:';'b(“z: YoBpY.(0).¥=0) 35 a constarfi.e., for small phase excursions<27 about
=7.(0)y, ", wherey,=(1—8p) *% The maximum ¢)  , E (y)=E (y.), wherey, is the local wake phase posi-
and minimum ¢ ) normalized axial momenta of an electron tjgn of the beat wave bucket ati(1,) is the local value of

in a beat wave orbitextrema of the separatjiare the plasma wake axial electric figldThe beat wave Hamil-
N tonian Eq. (3) will be modified due to the presence of
Ubear™ YoBb Y1 (0) = 2yp(azaz) ™ @) E (4,

As we will show, the beat wave amplitude parameter
(a,a,)Yis a critical parameter in the injection process. For

a;=a;=a, the beat wave amplitude parameten;,)"”  wheree=eE,(,)/(m.c?AK) is constant.
=ajy=eE,/MCwj, is the normalized root-mean-squared  Equation(5) describes the distortion of thei{, ;) phase
(rms), averaged over a laser period, electric field amplitudespace from symmetric islands£0) to “fish-shaped” is-
of the injection laser pulses. lands €+ 0) as shown in Fig. 3. Whea=0, the separatrix
Since the transit time of an untrapped electron through & symmetric iny, about the stable fixed poinb(point),
beat wave orbit and the bounce time of a deeply trappeé.g., located aty,=—m, with unstable fixed points x(
electron in a beat wave orbit are both much shorter than @ointg located atyy,=0,—27r. Whene#0, the separatrix is
plasma wave period, a separation of time scales is possibléish-shaped and the enclosed region of phase space is re-
This discrepancy in time scales is due to the extremely smaliuced (compared withe=0) and lies inside the region
spatial scale\y/2 of the beat wave orbits in comparison to —27<,<0. For example, wher<0, the “fish-tail” of
the plasma wake orbit,. It can be shown that the bounce the separatrix opens to the right, i.e., th@oint lies to the
period for an electron deeply trarip?d in the beat wave igeft of y,=0. In the limit 7| el yyy, (0)/2a2;<1, the
given by 7,=(2m/cAk)y2y, (m)/(a;a,)Y2 This bounce maximum and minimum axial momenta for an electron on
time is typically much shorter than the transit time\,/c of  the separatrix are

Hp(Uy, ) =[ ¥ () +UZ]1°— Bpu,+ ey,  (5)
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20 e T Traondi s ; plasma electron in an untrapped orbit of the plasma wake
1.5 Walgéj%,bit \\ FOE‘;ch Uuntrap IS given by Eq.(2) with H=1 (i.e., the background
10 \ Wake Ombit plasma fluid electrons The momentum of an electron in a
05 N // V trapped orbit of the plasma wake, is given by Eq.(2)
u, o, ‘H”” “W‘\ " with H= y;1+ ¢, . For an electron in a trapped and focused
i —— ; e i ; -1
os '”""H{m“"Nil‘lﬂ}‘ﬂw‘w‘ ;:E:rgﬁt orbit, ut'rap is given by.E.q.(Z) WAItl’l H<y, : N
1.0 Beat Wave NN Solving for the minimum &,a,)Y? which satisfies the
s Separatrices conditions Eqgs(7) and (8) yields the threshold beat wave
o amplitude parameter for trapping plasma electrons,
2 -1 0 1 2 3
14 I 1-H
. . (a12,)4°= TyB—Py)’ 9
FIG. 4. Phase space/(u,) showing the beat wave separatrices, YolBe™ Pb

an untrapped plasma wake ortsblid line), a trapped plasma wake
orbit (dotted ling, and a trapped and focused plasma wake orbitand the optimal wake phase for injectifilocation in wake
(dashed ling phase of the threshold beat wave amplitude parameter Eq.
9],
Upear=Bo Yol 71 (0) — 7| €] yp]

12 B 1
. zyb(aoal)uz( 1_M) ® COSYop= b5 Y| (1= B,85)7.(0)— 5 (1+H)|. (10
2802,
Both the width and height of the separatrix decrease wittHereH=1r,, 1+ ¢, for injection into a trapped plasma wake
increasing €| . orbit andH= 7;1 for injection into a trapped and focused
The electron fluid momentum in the plasma wake is givenp|a5ma wake orbit. In the limiy2>1, B,<1, and éi2<1,
by Eq. (2) with H=1. For 'yi>1, the normalized electron Egs. (9) and (10) become 4%152;1422(1+Bb)(1_H) and
. . . t
fluid - momentum IS Uz= — b9 COS (z,/x){[1+qboco§(¢/)/2]/[1 26 COSYp=1—2B,—H with H=¢, for a trapped orbit
+ ¢o cos()]}. Trapping may occur by the following method. o4y o for a trapped and focused orbit. As an example,
In the region— 7/2< <0, the plasma electrons are flowing the parametersd,=—0.2, y,=50, and $,=0.7 give a
backward (1,<0) and the electric field is accelerating( threshold of &.2 b1/2~0'2' ; ' i |.°. t: h ;
<0). If E,<0, thene<0 and the beat wave orbits open to rei Of 0 .e.laZ).th =5S.cangan o%|mad|r;jec |ondp abs_e 0
the right, as shown in Fig. 3. Consider an electron initially Yopr=0 fOr injection into a trapped and focused orbit. A
flowing backward, as it would in the region 7/2< <0, c_alculatlor_1 of t_hg w_ake phase region where trz.ippmg.ls pos-
thus initially residing below the beat wave separatrix. As Fig.Slble fodr.glxen injection laser pulse amplitudes is provided in
3 indicates, the orbits are open and can take an electron frof%pr:)?n X A h he threshold b litud
below to above the beat wave separatrix. Such an electron ' '9U'® %a) s ows the thresho eat_vlvave amplitude pa-
would acquire a positive axial momentum which is suffi- F@meter for trappindEq. (9) with H=1y_"+ ¢,] and Fig.
ciently high to be trapped and accelerated by the plasma(®) shows tﬂe Opt'”;al _wal;e phase flor '”lieCt'O” ve_zrlsus the
wake. The open phase space orbits provide a possible pai§at wave phase velocif, for several wake potential am-

by which the ponderomotive beat wave can lead to trapping!itudes. From Fig. @) one sees that the larger the plasma
of electrons in the plasma wake. wake, the smaller the injection laser pulse intensity required

for trapping plasma electrons. The threshold for injection
into a trapped and focused orbit is independent of plasma
wake amplitude as indicated by E®) with H= y;1 . In the

The threshold injection laser pulse intensities required folimit 7420>1* the threshold beat wave amplitude parameter

trapping of background plasma electrons into the plasm?Or a trapped and focused orbit isa,@,)Y2%=1/4y,(1

wake can be estimated by considering the effects of the—ﬁb)]so.ZS for B,=<0. Figure %a) also shows that the

plasma wake and the beat wave individually and requ.iringchreshold slightly decreases for decreasihg Note that the

resonance ovsrla(sf;oglr\]ln 'S F'tg- 3. Speuﬂcal{y, the magl- . estimate of the trapping threshold E§) will not be valid
mum momentum of the beatl wave sSeparalrix exceeds hen the separation in time scales no longer appqiies,

minimum momentum of the plasma wake separatrix and thg\lhen |B,| is large enough such that,~\,/c). Further-
minimum momentum of the beat wave separatrix is less thaﬂwore vatflidity of Eq.(10) requires|cosi tl<p1 '
, . op .

the fluid momentum of electrons in the plasma wake. With Minimizing the injection pulse amplituddsperating near

these requirements, the necessary conditions for trapping s threshold amplitude given by E@)] will minimize the

C. Trapping threshold

(Upead max= Utrap» (7) laser poweP;=43(a;r; /\;)?> GW required for trapping and
is therefore important for the experimental realization of this
(Upead min<Uuntrap: (8)  injection scheme. For illustration, if the injection laser pulses

have a wavelength of 0.8m and a spot size of 1am, then

The maximum and minimum momenta of an electron in athe injection laser pulse power required for trappingPis
beat wave orbit are given in Eq4). The momentum of a <1 TW for a;<0.26.
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taken for the backward propagating injection laser pulse. The
longitudinal profile of the pump pulse is assumed to have the
form ag= — aplL((2¢— 7)/4m)cog (2y— m)/4], whereIl(s)
is a step function such thai(s)=1 for |s|<1/2 and zero
otherwise. The injection laser pulses are assumed to have
longitudinal profiles of the forna;=a,I1(s;)cos(rs), where
si=(z—,3gict—zi)Li‘1 with L; the length of the injection
laser pulses and a constant.
The polarizations of the laser pulses are chosen to be
e o=x ande, ;=¢€, ,=Y such thata,-a,~0 and thus there
is no beatingno slow wave generatigrirom the interaction
of the pump laser pulse and the counterpropagating injection
laser pulse. The ponderomotive potential due to the beating
of the injection laser pulse@veraged over the fast phase
oscillationg is a;-a,=a3+as+2a;a,Ccos{y— ). The
plasma wake fields produced by the injection laser pulses can
be neglected ¢~ $,<< ) since the injection laser pulse
amplitudes required for trapping are much less than the
pump laser pulse amplitude and the pulse lengths of the in-
02 05 ol ol o5 o oos o1 jection laser pulses can be chosen to p_rqwd_e poor coupling
B, between t_he pzlasma response and the |nje(_:t|0n Igser pulses.
Assumingag<1, the plasma wake potentigl excited by
FIG. 5. (@ The threshold beat wave amplitude parameterthe ponderomotive force generated by the pump laser pulse
(a,a,) Y2 for trapping at the optimal injection phaggq. (9)] versus ~ (to lowest order in pump laser pulse amplitudesar the
beat wave phase velocitfor ¢,=0.5, 0.6, and 0)7 (b) The opti-  waist of the pump laser pulse€Zg,) satisfieq16]
mal wake phase for injectiogi,, [Eq. (10)] versus beat wave phase

Wopt -

velocity (for ¢,=0.5, 0.6, and 0.7 éé 3r ¢
¢=—exgd —2r2r]| 1+sing+| —— —) cosy
IIl. NUMERICAL STUDIES 4 4 2 13
To further evaluate the colliding laser pulse scheme and
to test the analytic predictions for the trapping thresholdgpside the pump laser pulse, and
presented in Sec. Il, the motion of test particles in the com-
bined plasma wake and laser fields was simulated by numeri- ~
cally solving the equations of motion for the electrgnsla- Tao 2,2
) : ; . : ¢=——exd —2r-/rg]cosy (14)
tivistic Lorentz equatiohp In the numerical simulations, we 4

assume the laser pulses are linearly polarized with funda-

mental Gaussian radial profiles and half-period cosine longiafter the pump laser pulse. The axial and radial components
tudinal envelopes. In the paraxial approximation<rg;, of the electric field due to the plasma wake potential after the
where \; is the laser wavelength and,; is the minimum pump laser pulse are

laser spot sizethe normalized vector potential of the laser

pulses isa; =€, ;a, ; + €,a,; wheree, ; ande, are unit vectors MeC? )
and the vector potential components are giverj 15} E.=—% —¢0exp[ 2r?irlsing, (19
T
ai.zﬁaiﬁexq—rzlw?]coswi, (11) mec? 4r -
i E = e 12 — doexf — 2r4/rg]cosy, (16

- r2/w? -
2\/_a, kiw? exp[ rIwil where ¢,=ma3/4. The radial electric field will provide a

focusing force for an electron at a plasma wake phase of

X[sing;—(z/Zg;)cosy;]. (12 cosy>0 and a defocusing force for cgs<0, as noted in
. Sec. Il A.
Here o= 2mc/\; is the laser frequencyw (2)=rsi(1 The equations of motiorfrelativistic Lorentz equation

+2%1Z%) " is the laser spot siz&Zg;=kir3/2 is the Ray-  for the plasma electrons in the combined 3D fields of the
leigh Iength and ¢ =ki(z— B¢.Ct)+2f2/(W22R.)+2/ZR. three lasers and the plasma wake were numerically integrated
—tan '(z/Zg)) + ¢; is the phase withp; a constant. The using an adaptive step-size Runge-Kutta metfi5d. The
phase veIomtyc,Bm w;ilk; and group veIoutyc[Bg, are  plasma was assumed to be initially homogeneous and cold
given by B, ,6’g|—+(1 wiwf—4crZw?)". The  such that the test particles were loaded uniformly with no
positive sign is taken for the pump laser pulse and forwardnitial momentum. Unless otherwise stated, the parameters
propagating injection laser pulse and the negative sign isised in the numerical simulations are listed in Table I.
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TABLE I. Simulation parameters. 0.12
0.1 . @
Plasma wavelength, 40 um
Pump laser strength, 0.94 __ 008
Plasma wake potentiap, 0.7 4% 006
Pump pulse length,=A, 40 um 0,04
Pump pulse wavelengtk, 0.8 um
Laser spot sizeég=rg=r 15 um 0.02
Injection laser pulse strengty =a, 0.4
Injection pulse length.;=L,=\/2 20 um
Injection pulse(forward) wavelength\ ; 0.83um
Injection pulse(backward wavelength , 0.80 um
0.05
A. Simulation results 0.04
The orbit of a single test electron in longitudinal phase 0.03
space (/,u,) interacting with the combined fields of the la- Lo
sers and the plasma wake is shown in Fig. 6. The dotted line 0.02
shows the separatrix between trapped and untrapped orbits of 0.01
the plasma wake Hamiltonian E@L.), the dashed line shows 0
the orbit of the test electron without the beating injection 2 A1 0 1 2
laser pulsesgfollowing an untrapped plasma wake opb@nd Vi

the solid line shows the orbit of the test electron interacting
with the beating injection laser pulses. Figure 6 shows the FIG. 7. (a) Threshold beat wave amplitude parametyay)*?
phase shift and momentum gain from the beating injectiorversus plasma wake potential amplitude. Solid line is @y with
laser pulses allowing the test electron to move from an un<,=0.7 andg,=—0.2. Points are numerical simulation resuts.
trapped to a trapped plasma wake orbit. Fraction of loaded test electrons which become trapped and focused
The particle transport code was used to test the ana|ytifplashed lingand the fraction of loaded test electrons which become
predictions made by the Hamiltonian analysis of the motiorfrapped and defocuse@olid lin) after the colliding laser pulses
of electrons in the beat wave and the plasma wake present¥grsus injection wake phaséy .
in Sec. Il. The minimum injection laser pulse amplitude for i . L ]
injection of plasma electrons into a trapped orbit of the 10 determine the optimal injection wake phase which
plasma wake is shown in Fig.(d@. The solid line is the Minimizes the injection laser pulse amplitude requwed for
analytic estimation, Eq(9), with H=y;1+¢0 and B, trapping of background_plasma electrons, the fraction of
——0.2, and the points correspond to simulation results. A0aded test electrons which become trappgas a result of

somewhat higher10%) laser pulse amplitude is needed the coIIiding. injegtion laser pulses was examined as a func-
for trapping in the simulation results than predicted by thetlon of the Injection Wa"? _pha_séthe plasma Wake_ p_hase
here the maxima of the injection laser pulses collideg-

analytic estimation. This is due to the nonconstant laser puls\éf b) sh he fract t loaded el hich b
profiles (longitudinal and transverseised in the numerical Uré Ab) shows the fraction of loaded electrons which be-

imulati : he el . lower 4. )v2  come trapped and focusedashed ling and the fraction
simulationsfi.e., the e ectrons experience a owerlzﬁz). . which become trapped and defocudedlid line) versus the
before and after the collision of the maxima of the injection

I | d when th icl # axis due 1 thinjection wake phasg,. In Fig. 7b), f; is defined as the
aser puises and when the particles move oft axis due 10 i, .ion of electrons that become trapped which were loaded
transverse fields of the plasma wake

uniformly in a region of lengthr/2 in wake phase about;,
andr<2 um (simulations show electrons loaded with
>2 um do not become trappgdThe trapping fraction is
peaked aty,,~* 1.0, which agrees well with the analytic

Electron orbit

with beating predictions[Eq. (10) with B,=—0.2 and ¢,=0.7]. The
03 Plasma Wakd] asymmetry in the trapping fraction shown in Figbyis due
U, ol to the distortion of the beat wave buckets from the presence
N v of the plasma wake as described in Sec. Il B. Significant
-05[ Electonorbl ~— — — trapping of electrons occurs in an injection wake phase re-
L tihourbesting gion of — 1.5< ¢s,,;=1.5. This indicates that the two collid-
A4 -135 <13 125 <12 115 -1l ing injection laser pulses must be synchronized to the plasma
v wake with an accuracy of-10 fs, which is not a serious

timing constraint for current laser technology.
FIG. 6. Phase spaca/(u,) orbit of test electron without the

beating injection laser pulsédashed lingand with the test electron

experiencing the influence of the beating injection laser pulses
(solid line). The separatrix between trapped and untrapped plasma To further characterize the performance of this optical
wake orbits(dotted ling is shown. injection concept, the dynamics of the trapped electron

B. Electron bunch dynamics
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page for the interaction lengths considerédy= (3,
134 —By)wyot=0 for C5t<)\p'yi]. Figure §c) shows the frac-
135 tional energy spread,/(y) (solid line) and the longitudinal
{r) -136 w) rms emittance(dashed ling of the trapped electron bunch
20 137 versus interaction length. The longitudinal rms emittance is
138 defined ase| (eV sec)y- meczw;'l(qzyafb— a2 where
10 139 o, ={y¥)—(y){¥). As Fig. §c) indicates, the longitudinal
0 14'0 rms emittance is not conserved and the fractional energy

' ' ' spread of a trapped electron bunch asymptotes to a constant
0 0.1 0.2 0.3 0.4 0.5 X . .
Interaction Length (mm) value. A calculation of the asymptotic value of the fractional
energy spread EqB12) is provided in Appendix B. The

035 longitudinal rms emittance is not conserved since the bunch
becomes highly relativistic at a wake phase where the axial
0.30 electric field Eq.(15) is a nonlinear function of wake phase.
0.25 Near the axisr/rg<1, the radial electric field of the
0.20 Oy plasma wake Eq(16) is linear with respect to the radial
coordinate to lowest order i©(r/rg). If the electron bunch
015 is injected into the focusing region (c¢s-0), the radial
ki 0.10 electric field will provide a focusing force with a focusing
o Imerg'cionm‘gfh(mm)°"‘ 05 strengthk®=eE, / ymc?r = (4 ¢,/ yr 2,) cosy. The evolution
of the rms radius of the electron bunch will be described by
50 the envelope equatidi 8]
0.175
015 28 LY, 20 et
ﬂ 0.125 26 c Ty + ¥ Oy +k Or= 720_r + 720_?1 (17)
<Y> 0.1 . 24 I
0075 - where primes indicate derivatives with respect ¢o,
005 133 ' o, =[(r?)—(r)21¥2 s the rms radius of the electron bunch,
008 s o3 o2 o5 0 | is the beam current, = (m.c®/e) By is the Alfven current,
" Interaction Length (mm) ' and &, =y(0?0>,— 0> )2 is the normalized transverse
FIG. 8. Dynamics of trapped electron bundia The mean 'MS €mittance wherer?, =(r'3)—(r")? and oy, =(rr’)
phase(y) (dashed ling and mean energyy) (solid line) of a —(r){r'). With linear focusing, the normalized transverse

trapped electron bunch versus interaction lengthThe rms phase ms emittance is conserved for a monoenergetic beam. Fig-
spreado,, (dashed linpand rms energy sprea, (solid line) ofa  ure 9 shows the transverse phase spaggic,yBy) of the
trapped electron bunch versus interaction lengthFractional en-  trapped and focused electron bunch presented in Kg. 2
ergy spreado, /(y) (solid line) and longitudinal rms emittance just after the collision of the injection laser pulgedter 0.07
e‘|(10*9 eV sec)(dashed lingof a trapped electron bunch versus mm of propagationand in Fig. Zd) after 0.7 mm of propa-
interaction length. gation. The slight increase in normalized transverse rms
emittance shown in these figures is due to the nonlinear fo-
bunches were studied analytically and numerically. In Ap-cysing force provided by the plasma wake. In principle, a
pendix B we calculate the longitudinal dynamics of a rela-collimator may be used to spatially filter the trapped bunch
tivistic electron bunch trapped in the plasma wake. Figure &nd reduce the transverse emittance.
shows an example of simulation results of the evolution of a The effects of space charge within the trapped electron
typical trapped and focused electron bunch generated by colynch were not included in these simulations. This omission
liding the injection laser pulses at a wake phase/@f=0.  can be justified by considering the ratio of space charge to

The mean phasgy) (dashed lingand mean energfy)  emittance terms in the beam envelope equation(Eg,
(solid line) of a trapped electron bunch versus interaction

length are shown in Fig. (8). The interaction length._;, | o2
considered in these simulations is much less than the dephas- 2— _zr (18)
ing IengthLim<LdephaSév)\pyi (i.e., interaction times much la &

shorter than the bounce time in a trapped plasma wake) orbit

and less than the Rayleigh length,<Zgro. The figure For the electron bunches described in Sec. Ill C, the ratio of
shows the reduction of phase slippage as the bunch becomti space charge term to the emittance term @& is
relativistic and the linear growth of the mean energy of the~10"3, and the bunch is emittance dominated.

bunch in this regime. The rms phase spregddashed ling Space charge forces should not be a concern longitudi-
and the rms energy spread, (solid line) of the trapped nally if the electric field due to space charge forces within
electron bunch versus interaction length are plotted in Figthe bunch is much less than the axial electric field due to the
8(b). Figure &b) shows the rms phase spre@ bunch du- plasma wakg19]. This will be satisfied when the ratio of
ration, which is defined aﬁ)glaw) is constant once the beam densityn, to the plasma densityn, is ny/ne
bunch becomes relativistic due to the absence of phase slipﬁaglaw, wherea, is the spread in wake phase of the elec-
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FIG. 9. Transverse phase space distributianx(c, y8y) of a 0 : : . . . . 104
trapped and focused electron burighjust after the collision of the 0283 0318 0.354 0.389 0.424 0.460
injection laser pulsegafter 0.07 mm of propagati¢rand (b) after Ja.a,

0.7 mm of propagation.
FIG. 10. (a) Fraction of loaded test electrons which become

tron bunch. For the parameters under consideration in thigapped and focused after the colliding laser pulsedid line) and
paper, this condition is satisfied and the space charge effecinch duration(fs) of trapped electron bunctiashed ling versus
are small while the bunch remains in the plasma. Spac@eat wave amplitude paramet¢b) Asymptotic fractional energy

charge effects can become quite significant after the bunchPreadr,/(y) (solid ling) and normalized transverse rms emittance
leaves the plasma e, (mm mrad (dashed lingafter 0.5 mm of propagation of trapped

electron bunch versus beat wave amplitude parameter.

C. Electron bunch quality

) . A dramatic example of the colliding pulse injection pro-
The quality of the electron bunch can be examined as the A

) ~ a1 cess is shown in Fig. 2 fot,=L,=10 xm and élzaz
beat wave amplitude parameter; &,) < is increased beyond

LY =0.32 with ¢, =0 (other parameters as in Table FFigure 2
the threshold value for injection into a trapped and focusedy, ;s longitudinal phase spacg, (i,) of the test electrons.

orbit, Eq.(9), with H=y,*. Figure 1Qa) shows the fraction  As shown in Fig. 2d), the results are very dramatia 1 fs
of loaded test electrons which become trapped and focusegectron bunch with energy 39 MeV, fractional energy
(solid line) as a result of colliding the injection laser pulses atspread of 0.2%, and normalized transverse emittar6ed

a wake phase offi=0 versus the beat wave amplitude oy mrad. The bunch number M,=2.6x 10° electrons for
parameter. The fraction of loaded test electrons is defined a$ plasma density afi,=7x 107 cm 3.

in Sec. lll A. The maximum value shown on Fig.@bcor- The number of trapped electrons can be increased by in-
responds to a bunch numberj=0.5x10" electrons for a - ¢reasing the injection laser spot siée., increasing the in-
plasma density ofe=7x10"" cm™*. jection laser pulse powgrFigure 11 shows that the number

As shown in Sec. Il B, the rms phase spreadnch du-  of (rapped and focused electrons increases for increasing spot
ration) is constant for a highly relativistic bunch, the frac- gjze of the laser pulsésther parameters the same as Fig. 2
tional energy spread is asymptotic, and the transverse nofqr  —r_ =r,=30 um (P;=P,=6 TW), the number

malized rms emittance is qonserved for large pump laser spej trapped electrons increasesNg=14.5x 1(f electrons.
size. Therefore, we examined these three measures of bunch

quality versus increasing beat wave amplitude parameter.
Figure 1@a) shows the bunch duration of the trapped elec-
tron bunch(dashed lingversus the beat wave amplitude pa-  In this paper, we have explored the generation of ul-
rameter. The asymptotic fractional energy spread(y) trashort electron bunches by using colliding laser pulses to
(solid line) and the normalized transverse rms emittance dephase background plasma electrons undergoing fluid oscil-
(dashed ling after 0.5 mm of propagation versus the beatlations in a plasma wake. A variation of this scheme, which
wave amplitude parameter are shown in Fig(bl0These relies on the same trapping mechanism, is to remove the
figures indicate the production of1 fs election bunches forward propagating injection laser pulse and to beat the
with ~1% fractional energy spread andl mm mrad nor- pump laser pulse with the backward propagating injection
malized transverse rms emittance. laser pulse. Near the back of the pump pulse, a sufficiently

IV. SUMMARY AND DISCUSSION
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epTTTTTTTT T T H+ ¢=[1+Ugapl "= ByUrap, (A1)
14T ]
I ] 2
g 12F ] 1+ ¢: [1+ uuntra;;lllz_ szuuntrapa (A2)
=1 L ]
g 10} E where H< ¢,+y, " for a trapped orbit andH<1y," for a
2 osf . trapped and focused orbit.
z F ] To determine the region in wake phagevhere trapping
0.6F ] . . . X
- ] is possible, consider the phage where the maximum beat
04t E wave momentum equals the momentum of the wake separa-
025 . . ' ' . trix,
10 15 20 25 30 35
Ta(pm) (Upead max= utrap( 1), (A3)
FIG_. 11. Number of trapped and focused electrdhysversus  gnd the phase, where the minimum beat wave momentum
spot size of laser pulses f=rs=rg). equals the fluid momentum,
large plasma wake will be generated to allow trapping of (Upead min= Uuntragd ¥2).- (A4)

plasma electrons dephased by the slow wave created by the

beating of the pump laser pulse and the backward propagathe maximum and minimum momentum of the beat wave
ing injection laser pulse. Alternatively, colliding pulse injec- Separatrixu,e,; are given by Eq(4). Applying these condi-
tion could be done using several forward propagating injections, Egs.(A3) and (A4), to the plasma wake Hamiltonian
tion pulses (which are properly phasgdand a single relations, Eqs(Al) and(A2), yields

counterpropagating injection pulse so that several adjacent

_ 2 12
plasma wave buckets could be filled with ultrashort electron H+ (1) =[1+ (Upeadmad >~ Bo(Upeadmax:  (AB)
bunches. Other variations on the colliding pulse injection 2 112
concept can be readily envisioned. 1+ ¢(4h2) =[1+ (Upeadmin] "~ Be(Ubeadmin-  (AB)

In summary, the colliding laser pulse injection schemeB solving for ¢, and i, we obtain
investigated in this paper has the ability to produce relativ- y 9 1 2

istic femtosecond electron bunches ywth low fractional en- cos://l=¢>gl[ Yoy, (0)(1—B,By)

ergy spread £1%) and low normalized transverse emit-

tance -1 mm mrad). The colliding pulse scheme requires —27b(ﬁ¢—ﬁb)(5152)1/2—H], (A7)
relatively low laser power compared to the pump puk%e

~a5<a3, and allows for detailed control of the injection oSy = by U 27p(Bo— Bo) (2125) Y2

process through the injection phagmsition of the forward ¢

injection laser pulse the injection time (injection pulse + Y0¥ (0)(1—=B,Bp) —1]. (A8)

lengths, the beat wave velocit{frequencies of the injection o

laser pulses and the beat wave amplitude parametejec-  Note that |¢,|<|y¢| and ¢,= = o When @;a,)*?

tion laser pulse intensitizsswWe believe these capabilities are = (éléz)tlr{z_

critical for the experimental realization of laser-triggered in-  |f the right-hand sidgRHS) of Eq. (A8) satisfies| RHS
jection and subsequently compact laser-plasma-based pat-1, then the wake phase regions where trapping is possible

ticle accelerators. are —|y|<y=<—|¢,| and|y,|<y=<|y4|. If solutions to
Eq. (A8) do not exist[i.e., the RHS of Eq(A8) satisfies
ACKNOWLEDGMENTS |[RHY>1], then the minimum beat wave momentum is less

than the fluid momentum for all wake phases, i
We acknowledge useful conversations with P. Volfbeyn u n W PhaseSyde) min

and M. Zolotorev. The research at UCB was supported b<oususnittr;ié()i)s,_a|1nd|t<hevla|1ke| pk_lu_?]se ereg|o_r(1)nwhere troappérsgicols
the U.S. Department of Energy, Division of High Energy and; . ... ~ . hal=d=|4]. Nese regions are correct Tor
Nuclear Physics Grant No. DEFG-03095ER-40936. Th Injection into a trapped (_)rblt-l— $ot v, [where ;o_lutpns
o Eg. (A8) exist for typical parametefsand for injection
work at LBNL was supported by the U.S. Department of. )
Energy under Contract No. DE-AC-03-76SF0098. into a trapped and focused orbit= y,, - [where the RHS of
Eq. (A8) satisfies RHY>1 for typical parameteis
The above Hamiltonian theory can be used to estimate the
initial trapping volume in 3D, assuminigyrs,>1 such that
In this appendix, we calculate the region where trapping ighe radial motion of the electrons in the plasma wake re-
possible(i.e., the plasma volume where the injection lasermains small. The wake phase region where trapping is pos-
pulse amplitudes are greater than the threshold for moving afible is a function of the radial position of the electrons via
electron from an untrapped to a trapped Orbit Egs. (A7) and (A8) along with the generalizationg,
Consider &,a,) 2> (a;a,)+?, where @,a,)1%is defined  =a;(r) and ¢,= ¢,(r) given by Eqgs.(11), (12), and (14).
by Eg. (9), such that the beat wave separatrix overlaps welFigure 12 shows the regioG,r(¥)) where trapping of
both the untrapped plasma fluid orbit and the plasma wakplasma electrons is possible for the parameters given in
separatrix. From Eq.1), the momentum of trapped and un- Table I. In Fig. 12, the maximum radial postition where trap-
trapped electrons in the plasma wake satisfies the relationging is possible . iS I max= 4.2 wm, and the length of the

APPENDIX A: TRAPPING VOLUME
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FIG. 12. Region in {,r) where trapping of plasma electrons is
allowed for parameters in Table I.

wake phase region where trapping is possiblg,
= ngl(2| #1(0)]) is Ly=7.9 um. The volume where trap-
ping is allowed is

V=

f w2 () di. (A9)

For Fig. 12 the trapping volume M,~=3.0x10 1% cm3,
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action times much shorter than the bounce time in a trapped
plasma wake orhjt With these assumptions, Eq®1) and
(B2) have solutions

Y= Yo~ $oTSiNYyg, (B3)
y=1po. (B4)

With zero(or constantphase slippage, the rms phase spread
o%=(¢?) —(w)? is constant,

ol

We assume a Gaussian distribution in wake phase of the
trapped electrons,

where the expectation value of an arbitrary functfdg,) is

=0. (B5)

dr o,

dN B 1
dio \/27705,

o 2
(o= (o)) l (B6)

2
20'¢

With the trapping region known, one can choose the in-

jection laser pulse lengths to be greater than the wake phase

region where trapping is possible,>L,,, thereby maximiz-

dN
<f(l/fo)>:fd_%f(‘/fo)dl/fo- (B7)

ing the number of electrons trapped. Figure 13 shows the

length of the wake phase regiag (solid line) and the maxi-
mum radial positior ., (dashed lingversus beat wave am-
plitude parameter for the parameters in Table I.

APPENDIX B: ELECTRON BUNCH DYNAMICS

In this appendix, we calculate the dynamical motion for a

trapped electron bunch in a plasma wake. The longitudin

relativistic limit are

dy . ci¢ B .
E—B-m——d)osm(//, (Bl)
dzﬁ_ B
E_ﬂz_ﬂ(p_oy (BZ)

where 7=w,t. The phase slippage is taken to be zero,

d«/dt=0. This will be valid for interaction lengths much
shorter than the dephasing Ieng.tbbphasé“)\p’}/i (i.e., inter-

0.35

0.45 0.5

FIG. 13. The length of the wake phase regign(solid line) and
the maximum radial position,,, (dashed ling where trapping is

possible versus beat wave amplitude parameiga) 2

a
equations of motion for the electron bunch in the ultra-

From Eg.(B3), the mean energy of the electron bunch
assuming a Gaussian distribution in wake phase(Bf) is

(¥)={0)— dore "W2siN o). (B9)

Assuming the initial conditiong and ¢, are uncorrelated
ﬁstatistically independenssuch that( yowo) =(yo)( o), the
ms energy spread’=(y?)—(y)? is
2 2 L1 5, —o? -,
oh=0f 5 pT(1-e ) (1+e vcog 2(iho)]).
(B9)

Using Eqgs.(B8) and(B9), the fractional energy spread is

, &
x o, +
o Y0

Y

3
2

(1—e 0)(1+e “vcod 2(¢o)])

2,
”) (Y0)— poTe” Tv/2sin i)
(B10)
with the asymptotic valugfor large 7)
2 2
o, Vi(1-e ")(l+e "scod2(o)]) o1
_r —
() e 72 sin( y)
For o,<1, Eq.(B11) simplifies to
=0 ,col ). (B12)

(7

The asymptotic form of the fractional energy spread Eg.
(B11) has a minimum value at a phase(afy)= 7/2 (at the
crest of the plasma wake[o,/(y)]lmin— Zsinhbﬁ/Z)
~0%/\2. As Eq.(B11) indicates, the asymptotic fractional
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energy spread is independent of the wake amplitude, and tsution in phase Eq(B6), the normalized longitudinal rms

just a function of the phase and the rms phase spread, whi@mittance is

is constant assuming zefor constant phase slippage. For

illustration, consider the numerical simulation shown in Fig.

8. Once the bunch becomes highly relativistigy~—13.9

and o,=0.17. With these values, the asymptotic fractional

energy spread predicted by E®12) is[o,/(y)]=0.04, in  The longitudinal rms emittance of the trapped electron bunch

good agreement with the numerical simulation Fiz)8 g| grows linearly for larger. This emittance growth is due to
The normalized longitudinal rms emittance of the trappedhe fact that the bunch becomes relativistic at a wake phase

electron bunch isef=0%0%—0%,, where o,,=(yy)  where the energy gain is nonlinear with respect to the wake

—(y)(¥). With the assumptions ,<1 and a Gaussian distri- phase.

1 .
of = 0% 0%t 5 B30y sin( o). (B13)
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