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Generation of ultrashort electron bunches by colliding laser pulses
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A proposed laser-plasma-based relativistic electron source@E. Esareyet al., Phys. Rev. Lett.79, 2682
~1997!# using laser-triggered injection of electrons is investigated. The source generates ultrashort electron
bunches by dephasing and trapping background plasma electrons undergoing fluid oscillations in an excited
plasma wake. The plasma electrons are dephased by colliding two counterpropagating laser pulses which
generate a slow phase velocity beat wave. Laser pulse intensity thresholds for trapping and the optimal wake
phase for injection are calculated. Numerical simulations of test particles, with prescribed plasma and laser
fields, are used to verify analytic predictions and to study the longitudinal and transverse dynamics of the
trapped plasma electrons. Simulations indicate that the colliding laser pulse injection scheme has the capability
to produce relativistic femtosecond electron bunches with fractional energy spread of order a few percent and
normalized transverse emittance less than 1 mm mrad using 1 TW injection laser pulses.
@S1063-651X~99!04505-5#

PACS number~s!: 52.40.Nk, 41.75.Lx, 29.25.Bx
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I. INTRODUCTION

Plasma-based accelerators@1–3# have received much the
oretical and experimental attention owing to the extrem
high longitudinal electric fields that can be excited in
plasma without the limitations due to breakdown found
conventional accelerators. The characteristic scale lengt
the accelerating field~plasma wake! in a plasma-based acce
erator is the plasma wavelengthlp (m)52pc/vp.3.3
3104ne

21/2 (cm23), wherene is the plasma density,c is the
speed of light, andvp5(4pnee

2/me)
1/2 is the plasma fre-

quency with me the electron mass and2e the electron
charge. In such short wavelength accelerators~typically lp

&100 mm), production of electron beams with low mome
tum spread and good pulse-to-pulse energy stability requ
femtosecond electron bunches to be injected with femto
ond synchronization with respect to the plasma wake.
though conventional electron sources~photocathode or ther
mionic RF guns! have achieved subpicosecond electr
bunches@4#, the requirements for injection into plasma-bas
accelerators are currently beyond the performance of th
conventional electron sources.

Optical injection schemes which rely on laser trigger
injection of plasma electrons into a plasma wake have b
proposed@5,6# to generate the required femtosecond elect
bunches. One method@6,7# utilizes two laser pulses which
propagate perpendicular to one another. One~injection! laser
pulse intersects the plasma wake generated by the o
~drive! laser pulse. The ponderomotive force due to the tra
verse gradient in the laser intensity of the injection la
pulse accelerates a fraction of the plasma electrons an
lows them to be trapped by the plasma wake. One disad
tage of this method of dephasing background electrons is
high laser intensities (.1018 W/cm2! required in the two
laser pulses. Consequently, large space charge waves a
PRE 591063-651X/99/59~5!/6037~11!/$15.00
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cited by the injection laser pulse which further complica
the injection process@7#.

Recently a new optical injection scheme was proposed@5#
which uses three short laser pulses, namely two low inten
injection laser pulses and a pump laser pulse for plas
wake excitation. The pump laser pulse generates a pla
wake through its ponderomotive force, as in the stand
laser wake-field accelerator@3#. The two injection laser
pulses, one pulse propagating in the forward direction beh
the pump laser pulse and the other pulse counterpropaga
to the pump laser pulse, collide at a predetermined phas
the plasma wake. During this collision, the beating of t
injection laser pulses generates a beat wave that kicks a
set of the background plasma electrons. Under appropr
conditions, described in this paper, some of the backgro
plasma electrons attain sufficient momentum and phase
to be trapped by the plasma wake.

The trapping mechanism of this colliding laser pul
scheme is somewhat analogous to the self-trapping pro
that can occur in the self-modulated laser wake-field ac
erator@8#. Self-trapped electrons with energies as high as 1
MeV have been observed in recent experiments@9–13#. In
addition to producing a large wake field via self-modulatio
a long pulse laser (L.lp , whereL is the laser pulse length!
decays into Raman backscattered light and a plasma w
@3#. The backscattered light can beat with the pump pu
generating a slow phase velocity beat wave, and accelera
background plasma electrons to sufficient energies so a
be trapped by the plasma wake@8#. The drawback of using
self-modulation of the pump pulse as an electron sourc
that it produces electron bunches with near 100% ene
spread. This is the case since the slow beat wave is
localized with respect to the phase of the plasma wave~i.e.,
the beat wave extends over distances much larger than
plasma wavelength!. Furthermore, self-modulation relies o
6037 ©1999 The American Physical Society
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instabilities, i.e., trapping and acceleration occur in an
controlled manner.

The colliding laser pulse scheme@5# has the potential to
produce femtosecond electron bunches with low fractio
energy spreads (;1%) using relatively low injection
laser pulse intensities compared to the pump la
pulse ainj

2 !apump
2 ;1, where a5eA/mc2.8.5310210

@l(mm)#@ I 1/2(W/cm2)# is the normalized vector potential,I
is the laser pulse intensity, andl is the laser wavelength
Note that sinceL&lp for the three laser pulses considered
this scheme, Raman instabilities will be suppressed. The
liding pulse concept also offers detailed control of the inje
tion process. The injection phase is determined by the r
tive timing between the forward propagating injection las
pulse and the pump laser pulse. The beat wave phase v
ity is adjusted by varying the frequency detuning betwe
the injection laser pulses, and the number of trapped e
trons can be controlled by the injection laser pulse intensi
and durations.

In this paper we systematically explore the colliding las
pulse optical injection scheme. In Sec. II we calculate
threshold laser pulse amplitudes and the optimal injec
wake phase for trapping using a Hamiltonian approach
Sec. III we present numerical simulation results from a thr
dimensional particle transport code which verify the analy
predictions and are used to characterize the dynamics
quality of the generated electron bunches. Conclusions
offered in Sec. IV. A calculation of the trapping volume
presented in Appendix A and in Appendix B we calculate
longitudinal dynamics of the trapped electron bunches.

II. PHASE SPACE ANALYSIS

The colliding laser pulse optical injection scheme e
ploys three short laser pulses as shown in Fig. 1: an inte
(a0

2&1) laser pulse~denoted by subscript 0! for plasma
wake generation, a forward propagating injection laser pu
~subscript 1!, and a backward propagating injection las
pulse~subscript 2!. The pump laser pulse generates a plas
wake with phase velocity near the speed of lightvw.c. The
injection laser pulses collide some distance behind the pu
laser pulse. When the injection laser pulses collide, they g
erate a beat wave with a phase velocityvb5Dv/Dk
.Dv/2k0, where the frequency difference of the injectio
laser pulses isDv5v12v2 and the wave-number differ

FIG. 1. Normalized potential profiles of the pump laser pulsea0,
the plasma wakef, forward injection laser pulsea1, and the back-
ward injection laser pulsea2.
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ence is Dk5k12k2.2k0 with k1.uk2u.k0. During the
time when the two injection laser pulses overlap, the sl
beat wave injects plasma electrons into the fast plasma w
for acceleration to high energies.

An example of the colliding laser pulse injection proce
is given in Fig. 2, which shows simulation results of th
evolution in longitudinal phase space of an initially unifor
segment of electrons as they interact with the plasma w
and the beating injection laser pulses. This figure was ge
ated using a particle transport code described in Sec.
Also shown is the separatrix~solid line! between the trapped
and untrapped orbits of the plasma wake Hamiltonian. Fig
2 shows the electron distribution~a! before the collision of
the injection laser pulses~in an untrapped orbit of the plasm
wake!, ~b! during the collision of the injection laser pulse
~crossing the wake separatrix!, ~c! just after the collision
~0.07 mm of propagation after the collision!, and ~d! the
resulting energetic electron bunch~0.7 mm of propagation
after the collision!.

A. Plasma wake Hamiltonian

The colliding laser pulse injection mechanism can
studied using a Hamiltonian approach. The electron mot
in a one-dimensional~1D! plasma wake is described by th
Hamiltonian@14#

H~uz ,c!5@11uz
2#1/22bwuz2f~c!, ~1!

whereuzmec is the electron axial momentum andcbw is the
plasma wake phase velocity, which is near the group velo
of the pump laser pulsevg.cbw . The scalar potential of the
plasma wake is assumed to have the formf(c)5fo cosc,
where the wake phase isc5vp(bw

21z/c2t) and the normal-
ized wake potential amplitude isfo5eFo /mec

2. The am-

FIG. 2. Electron distribution in longitudinal phase space (c,uz)
~a! before the collision of injection laser pulses (vpt536), ~b! dur-
ing the collision of injection laser pulses (vpt539), ~c! just after
the collision (vpt550), and~d! an energetic electron beam muc
after the collision (vpt5150). The separatrix between trapped a
untrapped plasma wake orbits~solid line! is shown.
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PRE 59 6039GENERATION OF ULTRASHORT ELECTRON BUNCHES . . .
plitude of the wake potential is determined by the pump la
pulse amplitude and shape. The normalized axial momen
of the electron in an orbitH5const of the plasma wake is

uz5bwgw
2@H1f~c!#6gw$gw

2@H1f~c!#221%1/2, ~2!

wheregw5(12bw
2)21/2. The boundary between trapped a

untrapped orbits is given by the separatrix orbitH5H(uz

5gwbw ,c5p)5gw
211fo . Assuming the plasma is ini

tially cold, the background electron fluid motion in th
plasma wake is defined by the orbitH51.

The 1D Hamiltonian Eq.~1! neglects the effects of trans
verse focusing. A three-dimensional~3D! plasma wake will
have a periodic radial field which isp/2 out of phase with
the accelerating field. Therefore there exists ap/4 region in
wake phase where the fields due to the plasma wake are
focusing and accelerating. For an electron to be trapped
remain in this region where the transverse electric field
to the plasma wake will provide a focusing force, it must
in an orbit defined byH<H(uz5gwbw ,c5p/2)5gw

21 .

B. Beat wave Hamiltonian

The colliding injection laser pulses lead to the formati
of a beat wave with phase space buckets~separatrices! of
width 2p/Dk.l0/2 ~much shorter than those of the wak
field lp , i.e., l0!lp is assumed!. The motion of the elec-
tron in the beat wave is described by the beat wave Ha
tonian

Hb~uz ,cb!5@g'
2 ~cb!1uz

2#1/22bbuz , ~3!

wherebb5Dv/cDk.(l22l1)/(l21l1) is the beat wave
phase velocity,cb5Dk(z2bbct) is the beat wave phase
and g'

2 (cb)511â1
21â2

212â1â2 coscb with â1
2 and â2

2 the
slowly varying amplitudes of the forward and backward
jection laser pulses averaged over the rapid phase osc
tions. The separatrix orbit in phase space of the beat w
Hamiltonian has the valueHb5Hb„uz5gbbbg'(0),cb50…
5g'(0)gb

21 , wheregb5(12bb
2)21/2. The maximum (1)

and minimum (2) normalized axial momenta of an electro
in a beat wave orbit~extrema of the separatrix! are

ubeat5gbbbg'~0!62gb~ â1â2!1/2. ~4!

As we will show, the beat wave amplitude parame
(â1â2)1/2 is a critical parameter in the injection process. F
â15â25âinj the beat wave amplitude parameter (â1â2)1/2

5âinj5eEinj /mecv inj is the normalized root-mean-square
~rms!, averaged over a laser period, electric field amplitu
of the injection laser pulses.

Since the transit time of an untrapped electron throug
beat wave orbit and the bounce time of a deeply trap
electron in a beat wave orbit are both much shorter tha
plasma wave period, a separation of time scales is poss
This discrepancy in time scales is due to the extremely sm
spatial scalel0/2 of the beat wave orbits in comparison
the plasma wake orbitlp . It can be shown that the bounc
period for an electron deeply trapped in the beat wave
given by tb5(2p/cDk)gb

2g'(p)/(â1â2)1/2. This bounce
time is typically much shorter than the transit time;lp /c of
r
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a plasma electron through a single period of the plas
wake. Therefore, on the time scale in which a single elect
interacts with a beat wave orbit, it can be assumed that
electron experiences a constant electric field from the pla
wake. The effect of the plasma wake electric field on t
phase space orbits is to distort the beat wave orbits.

About a single period of the beat wave, the plasma wa
electric fieldEz52(mec

2/e)(]/]z)f can be approximated
as a constant@i.e., for small phase excursionsc!2p about
co , Ez(c).Ez(co), whereco is the local wake phase pos
tion of the beat wave bucket andEz(co) is the local value of
the plasma wake axial electric field#. The beat wave Hamil-
tonian Eq. ~3! will be modified due to the presence o
Ez(co),

Hb~uz ,cb!5@g'
2 ~cb!1uz

2#1/22bbuz1ecb , ~5!

wheree5eEz(co)/(mec
2Dk) is constant.

Equation~5! describes the distortion of the (uz ,cb) phase
space from symmetric islands (e50) to ‘‘fish-shaped’’ is-
lands (eÞ0) as shown in Fig. 3. Whene50, the separatrix
is symmetric incb about the stable fixed point (o point!,
e.g., located atcb52p, with unstable fixed points (x
points! located atcb50,22p. WheneÞ0, the separatrix is
fish-shaped and the enclosed region of phase space i
duced ~compared withe50) and lies inside the region
22p,cb,0. For example, whene,0, the ‘‘fish-tail’’ of
the separatrix opens to the right, i.e., thex point lies to the
left of cb50. In the limit pueugbg'(0)/2â0â1,1, the
maximum and minimum axial momenta for an electron
the separatrix are

FIG. 3. Distortion of the beat wave orbits in phase spa
(cb ,uz) due to the presence of the plasma wakee
5eEz(co)/(mec

2Dk). With e,0, the buckets open to the righ
allowing electrons moving along untrapped orbits to be trapped
the plasma wake.
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ubeat.bbgb@g'~0!2pueugb#

62gb~ â0â1!1/2S 12
pueugbg'~0!

2â0â1
D 1/2

. ~6!

Both the width and height of the separatrix decrease w
increasingueu.

The electron fluid momentum in the plasma wake is giv
by Eq. ~2! with H51. For gw

2@1, the normalized electron
fluid momentum is uz.2f0 cos (c)$@11f0 cos(c)/2#/@1
1f0 cos(c)#%. Trapping may occur by the following method
In the region2p/2,c,0, the plasma electrons are flowin
backward (uz,0) and the electric field is accelerating (Ez
,0). If Ez,0, thene,0 and the beat wave orbits open
the right, as shown in Fig. 3. Consider an electron initia
flowing backward, as it would in the region2p/2,c,0,
thus initially residing below the beat wave separatrix. As F
3 indicates, the orbits are open and can take an electron
below to above the beat wave separatrix. Such an elec
would acquire a positive axial momentum which is suf
ciently high to be trapped and accelerated by the plas
wake. The open phase space orbits provide a possible
by which the ponderomotive beat wave can lead to trapp
of electrons in the plasma wake.

C. Trapping threshold

The threshold injection laser pulse intensities required
trapping of background plasma electrons into the plas
wake can be estimated by considering the effects of
plasma wake and the beat wave individually and requir
resonance overlap~shown in Fig. 4!. Specifically, the maxi-
mum momentum of the beat wave separatrix exceeds
minimum momentum of the plasma wake separatrix and
minimum momentum of the beat wave separatrix is less t
the fluid momentum of electrons in the plasma wake. W
these requirements, the necessary conditions for trapping

~ubeat!max>utrap, ~7!

~ubeat!min<uuntrap. ~8!

The maximum and minimum momenta of an electron in
beat wave orbit are given in Eq.~4!. The momentum of a

FIG. 4. Phase space (c,uz) showing the beat wave separatrice
an untrapped plasma wake orbit~solid line!, a trapped plasma wak
orbit ~dotted line!, and a trapped and focused plasma wake o
~dashed line!.
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plasma electron in an untrapped orbit of the plasma w
uuntrap is given by Eq.~2! with H51 ~i.e., the background
plasma fluid electrons!. The momentum of an electron in
trapped orbit of the plasma wakeutrap is given by Eq.~2!
with H<gw

211fo . For an electron in a trapped and focus
orbit, utrap is given by Eq.~2! with H<gw

21 .

Solving for the minimum (â1â2)1/2 which satisfies the
conditions Eqs.~7! and ~8! yields the threshold beat wav
amplitude parameter for trapping plasma electrons,

~ â1â2! th
1/25

12H

4gb~bw2bb!
, ~9!

and the optimal wake phase for injection@location in wake
phase of the threshold beat wave amplitude parameter
~9!#,

coscopt5fo
21Fgb~12bwbb!g'~0!2

1

2
~11H !G . ~10!

HereH5gw
211fo for injection into a trapped plasma wak

orbit andH5gw
21 for injection into a trapped and focuse

plasma wake orbit. In the limitgw
2@1, bb!1, and âi

2!1,

Eqs. ~9! and ~10! become 4(â1â2)th
1/2.(11bb)(12H) and

2fo coscopt.122bb2H with H.fo for a trapped orbit
and H.0 for a trapped and focused orbit. As an examp
the parametersbb520.2, gw550, and fo50.7 give a
threshold of (â1â2)th

1/2.0.2 and an optimal injection phase o
copt.0 for injection into a trapped and focused orbit.
calculation of the wake phase region where trapping is p
sible for given injection laser pulse amplitudes is provided
Appendix A.

Figure 5~a! shows the threshold beat wave amplitude p
rameter for trapping@Eq. ~9! with H5gw

211fo# and Fig.
5~b! shows the optimal wake phase for injection versus
beat wave phase velocitybb for several wake potential am
plitudes. From Fig. 5~a! one sees that the larger the plasm
wake, the smaller the injection laser pulse intensity requi
for trapping plasma electrons. The threshold for injecti
into a trapped and focused orbit is independent of plas
wake amplitude as indicated by Eq.~9! with H5gw

21 . In the
limit gw

2@1, the threshold beat wave amplitude parame

for a trapped and focused orbit is (â1â2)1/2.1/@4gb(1
2bb)#<0.25 for bb<0. Figure 5~a! also shows that the
threshold slightly decreases for decreasingbb . Note that the
estimate of the trapping threshold Eq.~9! will not be valid
when the separation in time scales no longer applies~i.e.,
when ubbu is large enough such thattb;lp /c). Further-
more, validity of Eq.~10! requiresucoscoptu,1.

Minimizing the injection pulse amplitudes@operating near
the threshold amplitude given by Eq.~9!# will minimize the
laser powerPi.43(âi r i /l i)

2 GW required for trapping and
is therefore important for the experimental realization of t
injection scheme. For illustration, if the injection laser puls
have a wavelength of 0.8mm and a spot size of 15mm, then
the injection laser pulse power required for trapping isPi

<1 TW for âi<0.26.

it
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III. NUMERICAL STUDIES

To further evaluate the colliding laser pulse scheme
to test the analytic predictions for the trapping thresho
presented in Sec. II, the motion of test particles in the co
bined plasma wake and laser fields was simulated by num
cally solving the equations of motion for the electrons~rela-
tivistic Lorentz equation!. In the numerical simulations, w
assume the laser pulses are linearly polarized with fun
mental Gaussian radial profiles and half-period cosine lon
tudinal envelopes. In the paraxial approximation (l i!r si ,
where l i is the laser wavelength andr si is the minimum
laser spot size! the normalized vector potential of the las
pulses isaW i5ê' ia' i1êzazi whereê' i andêz are unit vectors
and the vector potential components are given by@15#

a' i5A2âi

r si

wi
exp@2r 2/wi

2#cosc i , ~11!

azi52A2âi

~xW•ê' i !r si

kiwi
3

exp@2r 2/wi
2#

3@sinc i2~z/ZRi!cosc i #. ~12!

Here v i52pc/l i is the laser frequency,wi(z)5r si(1
1z2/ZRi

2 )1/2 is the laser spot size,ZRi5kir si
2 /2 is the Ray-

leigh length, andc i5ki(z2bw ict)1zr2/(wi
2ZRi)1z/ZRi

2tan21(z/ZRi)1w i is the phase withw i a constant. The
phase velocitycbw i5v i /ki and group velocitycbgi are
given by bw i

215bgi56(12vp
2/v i

224c2/r si
2 v i

2)1/2. The
positive sign is taken for the pump laser pulse and forw
propagating injection laser pulse and the negative sign

FIG. 5. ~a! The threshold beat wave amplitude parame

(â1â2)1/2 for trapping at the optimal injection phase@Eq. ~9!# versus
beat wave phase velocity~for fo50.5, 0.6, and 0.7!. ~b! The opti-
mal wake phase for injectioncopt @Eq. ~10!# versus beat wave phas
velocity ~for fo50.5, 0.6, and 0.7!.
d
s
-
ri-

a-
i-

d
is

taken for the backward propagating injection laser pulse. T
longitudinal profile of the pump pulse is assumed to have
form â052a0P„(2c2p)/4p…cos@(2c2p)/4#, whereP(s)
is a step function such thatP(s)51 for usu,1/2 and zero
otherwise. The injection laser pulses are assumed to h
longitudinal profiles of the formâi5aiP(si)cos(psi), where
si5(z2bgict2zi)Li

21 with Li the length of the injection
laser pulses andzi a constant.

The polarizations of the laser pulses are chosen to
ê'05 x̂ and ê'15ê'25 ŷ such thataW 0•aW 2.0 and thus there
is no beating~no slow wave generation! from the interaction
of the pump laser pulse and the counterpropagating injec
laser pulse. The ponderomotive potential due to the bea
of the injection laser pulses~averaged over the fast phas
oscillations! is aW 1•aW 25â1

21â2
212â1â2 cos(c12c2). The

plasma wake fields produced by the injection laser pulses
be neglected (f1;f2!f0) since the injection laser puls
amplitudes required for trapping are much less than
pump laser pulse amplitude and the pulse lengths of the
jection laser pulses can be chosen to provide poor coup
between the plasma response and the injection laser pu

Assuminga0
2,1, the plasma wake potentialf excited by

the ponderomotive force generated by the pump laser p
~to lowest order in pump laser pulse amplitude! near the
waist of the pump laser pulse (z!ZR0) satisfies@16#

f5
â0

2

4
exp@22r 2/r s0

2 #F11sinc1S 3p

4
2

c

2 D cosc G
~13!

inside the pump laser pulse, and

f5
pâ0

2

4
exp@22r 2/r s0

2 #cosc ~14!

after the pump laser pulse. The axial and radial compone
of the electric field due to the plasma wake potential after
pump laser pulse are

Ez5
mec

2

e

vp

c
f0exp@22r 2/r s0

2 #sinc, ~15!

Er5
mec

2

e

4r

r s0
2

f0exp@22r 2/r s0
2 #cosc, ~16!

where fo5pâ0
2/4. The radial electric field will provide a

focusing force for an electron at a plasma wake phase
cosc.0 and a defocusing force for cosc,0, as noted in
Sec. II A.

The equations of motion~relativistic Lorentz equation!
for the plasma electrons in the combined 3D fields of
three lasers and the plasma wake were numerically integr
using an adaptive step-size Runge-Kutta method@17#. The
plasma was assumed to be initially homogeneous and
such that the test particles were loaded uniformly with
initial momentum. Unless otherwise stated, the parame
used in the numerical simulations are listed in Table I.
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A. Simulation results

The orbit of a single test electron in longitudinal pha
space (c,uz) interacting with the combined fields of the la
sers and the plasma wake is shown in Fig. 6. The dotted
shows the separatrix between trapped and untrapped orb
the plasma wake Hamiltonian Eq.~1!, the dashed line show
the orbit of the test electron without the beating injecti
laser pulses~following an untrapped plasma wake orbit!, and
the solid line shows the orbit of the test electron interact
with the beating injection laser pulses. Figure 6 shows
phase shift and momentum gain from the beating inject
laser pulses allowing the test electron to move from an
trapped to a trapped plasma wake orbit.

The particle transport code was used to test the ana
predictions made by the Hamiltonian analysis of the mot
of electrons in the beat wave and the plasma wake prese
in Sec. II. The minimum injection laser pulse amplitude f
injection of plasma electrons into a trapped orbit of t
plasma wake is shown in Fig. 7~a!. The solid line is the
analytic estimation, Eq.~9!, with H5gw

211fo and bw

520.2, and the points correspond to simulation results
somewhat higher (;10%) laser pulse amplitude is need
for trapping in the simulation results than predicted by
analytic estimation. This is due to the nonconstant laser p
profiles ~longitudinal and transverse! used in the numerica
simulations@i.e., the electrons experience a lower (â1â2)1/2

before and after the collision of the maxima of the injecti
laser pulses and when the particles move off axis due to
transverse fields of the plasma wake#.

TABLE I. Simulation parameters.

Plasma wavelengthlp 40 mm

Pump laser strengthâ0
0.94

Plasma wake potentialfo 0.7
Pump pulse lengthL05lp 40 mm
Pump pulse wavelengthl0 0.8 mm
Laser spot sizer s05r s15r s2 15 mm

Injection laser pulse strengthâ15â2
0.4

Injection pulse lengthL15L25lp/2 20 mm
Injection pulse~forward! wavelengthl1 0.83mm
Injection pulse~backward! wavelengthl2 0.80mm

FIG. 6. Phase space (c,uz) orbit of test electron without the
beating injection laser pulses~dashed line! and with the test electron
experiencing the influence of the beating injection laser pu
~solid line!. The separatrix between trapped and untrapped pla
wake orbits~dotted line! is shown.
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To determine the optimal injection wake phase whi
minimizes the injection laser pulse amplitude required
trapping of background plasma electrons, the fraction
loaded test electrons which become trappedf tr as a result of
the colliding injection laser pulses was examined as a fu
tion of the injection wake phase~the plasma wake phas
where the maxima of the injection laser pulses collide!. Fig-
ure 7~b! shows the fraction of loaded electrons which b
come trapped and focused~dashed line! and the fraction
which become trapped and defocused~solid line! versus the
injection wake phasec inj . In Fig. 7~b!, f tr is defined as the
fraction of electrons that become trapped which were loa
uniformly in a region of lengthp/2 in wake phase aboutc inj
and r<2 mm ~simulations show electrons loaded withr
.2 mm do not become trapped!. The trapping fraction is
peaked atcopt.61.0, which agrees well with the analyti
predictions @Eq. ~10! with bb520.2 and fo50.7#. The
asymmetry in the trapping fraction shown in Fig. 7~b! is due
to the distortion of the beat wave buckets from the prese
of the plasma wake as described in Sec. II B. Signific
trapping of electrons occurs in an injection wake phase
gion of 21.5&c inj&1.5. This indicates that the two collid
ing injection laser pulses must be synchronized to the pla
wake with an accuracy of;10 fs, which is not a serious
timing constraint for current laser technology.

B. Electron bunch dynamics

To further characterize the performance of this opti
injection concept, the dynamics of the trapped elect

s
a

FIG. 7. ~a! Threshold beat wave amplitude parameter (â1â2)1/2

versus plasma wake potential amplitude. Solid line is Eq.~9! with
fo50.7 andbb520.2. Points are numerical simulation results.~b!
Fraction of loaded test electrons which become trapped and foc
~dashed line! and the fraction of loaded test electrons which beco
trapped and defocused~solid line! after the colliding laser pulses
versus injection wake phasec inj .
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bunches were studied analytically and numerically. In A
pendix B we calculate the longitudinal dynamics of a re
tivistic electron bunch trapped in the plasma wake. Figur
shows an example of simulation results of the evolution o
typical trapped and focused electron bunch generated by
liding the injection laser pulses at a wake phase ofc inj50.

The mean phasêc& ~dashed line! and mean energŷg&
~solid line! of a trapped electron bunch versus interact
length are shown in Fig. 8~a!. The interaction lengthL int
considered in these simulations is much less than the dep
ing lengthL int!Ldephase;lpgw

2 ~i.e., interaction times much
shorter than the bounce time in a trapped plasma wake o!
and less than the Rayleigh lengthL int,ZR0. The figure
shows the reduction of phase slippage as the bunch beco
relativistic and the linear growth of the mean energy of
bunch in this regime. The rms phase spreadsc ~dashed line!
and the rms energy spreadsg ~solid line! of the trapped
electron bunch versus interaction length are plotted in F
8~b!. Figure 8~b! shows the rms phase spread~or bunch du-
ration, which is defined asvp

21sc) is constant once the
bunch becomes relativistic due to the absence of phase

FIG. 8. Dynamics of trapped electron bunch.~a! The mean
phase^c& ~dashed line! and mean energŷg& ~solid line! of a
trapped electron bunch versus interaction length.~b! The rms phase
spreadsc ~dashed line! and rms energy spreadsg ~solid line! of a
trapped electron bunch versus interaction length.~c! Fractional en-
ergy spreadsg /^g& ~solid line! and longitudinal rms emittance
« i(1029 eV sec) ~dashed line! of a trapped electron bunch versu
interaction length.
-
-
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page for the interaction lengths considered@dc5(bz

2bw)vpdt'0 for cdt!lpgw
2#. Figure 8~c! shows the frac-

tional energy spreadsg /^g& ~solid line! and the longitudinal
rms emittance~dashed line! of the trapped electron bunc
versus interaction length. The longitudinal rms emittance
defined as« i (eV sec)5mec

2vp
21(sg

2sc
22sgc

2 )1/2, where
sgc5^gc&2^g&^c&. As Fig. 8~c! indicates, the longitudina
rms emittance is not conserved and the fractional ene
spread of a trapped electron bunch asymptotes to a con
value. A calculation of the asymptotic value of the fraction
energy spread Eq.~B12! is provided in Appendix B. The
longitudinal rms emittance is not conserved since the bu
becomes highly relativistic at a wake phase where the a
electric field Eq.~15! is a nonlinear function of wake phase

Near the axisr /r s0,1, the radial electric field of the
plasma wake Eq.~16! is linear with respect to the radia
coordinate to lowest order inO(r /r s0). If the electron bunch
is injected into the focusing region (cosc.0), the radial
electric field will provide a focusing force with a focusin
strengthk25eEr /gmec

2r .(4fo /gr s0
2 )cosc. The evolution

of the rms radius of the electron bunch will be described
the envelope equation@18#

s r91
g8

g
s r81k2s r5

2~ I /I A!

g2s r

1
«'

2

g2s r
3

, ~17!

where primes indicate derivatives with respect toct,
s r5@^r 2&2^r &2#1/2 is the rms radius of the electron bunc
I is the beam current,I A5(mec

3/e)bg is the Alfvén current,
and «'5g(s r

2s r 8
2

2s rr 8
2 )1/2 is the normalized transvers

rms emittance wheres r 8
2

5^r 82&2^r 8&2 and s rr 85^rr 8&
2^r &^r 8&. With linear focusing, the normalized transver
rms emittance is conserved for a monoenergetic beam.
ure 9 shows the transverse phase space (vpx/c,gbx) of the
trapped and focused electron bunch presented in Fig.~c!
just after the collision of the injection laser pulses~after 0.07
mm of propagation! and in Fig. 2~d! after 0.7 mm of propa-
gation. The slight increase in normalized transverse r
emittance shown in these figures is due to the nonlinear
cusing force provided by the plasma wake. In principle
collimator may be used to spatially filter the trapped bun
and reduce the transverse emittance.

The effects of space charge within the trapped elect
bunch were not included in these simulations. This omiss
can be justified by considering the ratio of space charge
emittance terms in the beam envelope equation Eq.~17!,

2
I

I A

s r
2

«'
2

. ~18!

For the electron bunches described in Sec. III C, the ratio
the space charge term to the emittance term Eq.~18! is
;1023, and the bunch is emittance dominated.

Space charge forces should not be a concern longit
nally if the electric field due to space charge forces with
the bunch is much less than the axial electric field due to
plasma wake@19#. This will be satisfied when the ratio o
beam densitynb to the plasma densityne is nb /ne

!a0
2/sc , wheresc is the spread in wake phase of the ele
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tron bunch. For the parameters under consideration in
paper, this condition is satisfied and the space charge ef
are small while the bunch remains in the plasma. Sp
charge effects can become quite significant after the bu
leaves the plasma.

C. Electron bunch quality

The quality of the electron bunch can be examined as
beat wave amplitude parameter (â1â2)1/2 is increased beyond
the threshold value for injection into a trapped and focu
orbit, Eq.~9!, with H<gw

21 . Figure 10~a! shows the fraction
of loaded test electrons which become trapped and focu
~solid line! as a result of colliding the injection laser pulses
a wake phase ofc inj50 versus the beat wave amplitud
parameter. The fraction of loaded test electrons is define
in Sec. III A. The maximum value shown on Fig. 10~a! cor-
responds to a bunch number ofNb.0.53107 electrons for a
plasma density ofne5731017 cm23.

As shown in Sec. III B, the rms phase spread~bunch du-
ration! is constant for a highly relativistic bunch, the fra
tional energy spread is asymptotic, and the transverse
malized rms emittance is conserved for large pump laser
size. Therefore, we examined these three measures of b
quality versus increasing beat wave amplitude parame
Figure 10~a! shows the bunch duration of the trapped ele
tron bunch~dashed line! versus the beat wave amplitude p
rameter. The asymptotic fractional energy spreadsg /^g&
~solid line! and the normalized transverse rms emittance«'

~dashed line! after 0.5 mm of propagation versus the be
wave amplitude parameter are shown in Fig. 10~b!. These
figures indicate the production of;1 fs election bunches
with ;1% fractional energy spread and;1 mm mrad nor-
malized transverse rms emittance.

FIG. 9. Transverse phase space distribution (vpx/c,gbx) of a
trapped and focused electron bunch~a! just after the collision of the
injection laser pulses~after 0.07 mm of propagation! and ~b! after
0.7 mm of propagation.
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A dramatic example of the colliding pulse injection pr
cess is shown in Fig. 2 forL15L2510 mm and â15â2
50.32 withc inj50 ~other parameters as in Table I!. Figure 2
shows longitudinal phase space (c,uz) of the test electrons
As shown in Fig. 2~d!, the results are very dramatic: a 1 fs
electron bunch with energy 39 MeV, fractional ener
spread of 0.2%, and normalized transverse emittance.0.9
mm mrad. The bunch number isNb.2.63106 electrons for
a plasma density ofne5731017 cm23.

The number of trapped electrons can be increased by
creasing the injection laser spot size~i.e., increasing the in-
jection laser pulse power!. Figure 11 shows that the numbe
of trapped and focused electrons increases for increasing
size of the laser pulses~other parameters the same as Fig.!.
For r s05r s15r s2530 mm (P15P2.6 TW!, the number
of trapped electrons increases toNb.14.53106 electrons.

IV. SUMMARY AND DISCUSSION

In this paper, we have explored the generation of
trashort electron bunches by using colliding laser pulses
dephase background plasma electrons undergoing fluid o
lations in a plasma wake. A variation of this scheme, wh
relies on the same trapping mechanism, is to remove
forward propagating injection laser pulse and to beat
pump laser pulse with the backward propagating inject
laser pulse. Near the back of the pump pulse, a sufficie

FIG. 10. ~a! Fraction of loaded test electrons which becom
trapped and focused after the colliding laser pulses~solid line! and
bunch duration~fs! of trapped electron bunch~dashed line! versus
beat wave amplitude parameter.~b! Asymptotic fractional energy
spreadsg /^g& ~solid line! and normalized transverse rms emittan
«' ~mm mrad! ~dashed line! after 0.5 mm of propagation of trappe
electron bunch versus beat wave amplitude parameter.
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PRE 59 6045GENERATION OF ULTRASHORT ELECTRON BUNCHES . . .
large plasma wake will be generated to allow trapping
plasma electrons dephased by the slow wave created b
beating of the pump laser pulse and the backward propa
ing injection laser pulse. Alternatively, colliding pulse inje
tion could be done using several forward propagating inj
tion pulses ~which are properly phased! and a single
counterpropagating injection pulse so that several adja
plasma wave buckets could be filled with ultrashort elect
bunches. Other variations on the colliding pulse inject
concept can be readily envisioned.

In summary, the colliding laser pulse injection schem
investigated in this paper has the ability to produce rela
istic femtosecond electron bunches with low fractional e
ergy spread (;1%) and low normalized transverse em
tance (;1 mm mrad). The colliding pulse scheme requir
relatively low laser power compared to the pump pulsea1

2

;a2
2!a0

2, and allows for detailed control of the injectio
process through the injection phase~position of the forward
injection laser pulse!, the injection time ~injection pulse
lengths!, the beat wave velocity~frequencies of the injection
laser pulses!, and the beat wave amplitude parameter~injec-
tion laser pulse intensities!. We believe these capabilities a
critical for the experimental realization of laser-triggered
jection and subsequently compact laser-plasma-based
ticle accelerators.
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APPENDIX A: TRAPPING VOLUME

In this appendix, we calculate the region where trappin
possible~i.e., the plasma volume where the injection las
pulse amplitudes are greater than the threshold for movin
electron from an untrapped to a trapped orbit!.

Consider (â1â2)1/2.(â1â2)th
1/2, where (â1â2)th

1/2 is defined
by Eq. ~9!, such that the beat wave separatrix overlaps w
both the untrapped plasma fluid orbit and the plasma w
separatrix. From Eq.~1!, the momentum of trapped and un
trapped electrons in the plasma wake satisfies the relatio

FIG. 11. Number of trapped and focused electronsNb versus
spot size of laser pulses (r s05r s15r s2).
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H1f5@11utrap
2 #1/22bwutrap, ~A1!

11f5@11uuntrap
2 #1/22bwuuntrap, ~A2!

whereH<fo1gw
21 for a trapped orbit andH<gw

21 for a
trapped and focused orbit.

To determine the region in wake phasec where trapping
is possible, consider the phasec1 where the maximum bea
wave momentum equals the momentum of the wake sep
trix,

~ubeat!max5utrap~c1!, ~A3!

and the phasec2 where the minimum beat wave momentu
equals the fluid momentum,

~ubeat!min5uuntrap~c2!. ~A4!

The maximum and minimum momentum of the beat wa
separatrixubeat are given by Eq.~4!. Applying these condi-
tions, Eqs.~A3! and ~A4!, to the plasma wake Hamiltonia
relations, Eqs.~A1! and ~A2!, yields

H1f~c1!5@11~ubeat!max
2 #1/22bw~ubeat!max, ~A5!

11f~c2!5@11~ubeat!min
2 #1/22bw~ubeat!min . ~A6!

By solving for c1 andc2 we obtain

cosc15fo
21@gbg'~0!~12bwbb!

22gb~bw2bb!~ â1â2!1/22H#, ~A7!

cosc25fo
21@2gb~bw2bb!~ â1â2!1/2

1gbg'~0!~12bwbb!21#. ~A8!

Note that uc2u<uc1u and c15c25copt when (â1â2)1/2

5(â1â2)th
1/2.

If the right-hand side~RHS! of Eq. ~A8! satisfiesuRHSu
,1, then the wake phase regions where trapping is poss
are 2uc1u<c<2uc2u and uc2u<c<uc1u. If solutions to
Eq. ~A8! do not exist@i.e., the RHS of Eq.~A8! satisfies
uRHSu.1#, then the minimum beat wave momentum is le
than the fluid momentum for all wake phases (ubeat)min
,uuntrap(0), and thewake phase region where trapping
possible is2uc1u<c<uc1u. These regions are correct fo
injection into a trapped orbitH5fo1gw

21 @where solutions
to Eq. ~A8! exist for typical parameters#, and for injection
into a trapped and focused orbitH5gw

21 @where the RHS of
Eq. ~A8! satisfiesuRHSu.1 for typical parameters#.

The above Hamiltonian theory can be used to estimate
initial trapping volume in 3D, assumingkpr s0.1 such that
the radial motion of the electrons in the plasma wake
mains small. The wake phase region where trapping is p
sible is a function of the radial position of the electrons v
Eqs. ~A7! and ~A8! along with the generalizationsâi

5âi(r ) and fo5fo(r ) given by Eqs.~11!, ~12!, and ~14!.
Figure 12 shows the region„c,r (c)… where trapping of
plasma electrons is possible for the parameters given
Table I. In Fig. 12, the maximum radial postition where tra
ping is possibler max is r max54.2 mm, and the length of the
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wake phase region where trapping is possibleL tr

5cvp
21

„2uc1(0)u… is L tr57.9 mm. The volume where trap
ping is allowed is

Vtr5E pr 2~c!dc. ~A9!

For Fig. 12 the trapping volume isVtr.3.0310210 cm23.
With the trapping region known, one can choose the

jection laser pulse lengths to be greater than the wake p
region where trapping is possible,Li.L tr , thereby maximiz-
ing the number of electrons trapped. Figure 13 shows
length of the wake phase regionL tr ~solid line! and the maxi-
mum radial positionr max ~dashed line! versus beat wave am
plitude parameter for the parameters in Table I.

APPENDIX B: ELECTRON BUNCH DYNAMICS

In this appendix, we calculate the dynamical motion fo
trapped electron bunch in a plasma wake. The longitud
equations of motion for the electron bunch in the ult
relativistic limit are

dg

dt
5bW •

c]f

vp]xW
.2f0sinc, ~B1!

dc

dt
5bz2bw.0, ~B2!

where t5vpt. The phase slippage is taken to be ze
dc/dt.0. This will be valid for interaction lengths muc
shorter than the dephasing lengthLdephase;lpgw

2 ~i.e., inter-

FIG. 12. Region in (c,r ) where trapping of plasma electrons
allowed for parameters in Table I.

FIG. 13. The length of the wake phase regionL tr ~solid line! and
the maximum radial positionr max ~dashed line! where trapping is

possible versus beat wave amplitude parameter (â1â2)1/2.
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action times much shorter than the bounce time in a trap
plasma wake orbit!. With these assumptions, Eqs.~B1! and
~B2! have solutions

g5g02f0t sinc0 , ~B3!

c5c0 . ~B4!

With zero~or constant! phase slippage, the rms phase spre
sc

25^c2&2^c&2 is constant,

dsc

dt
5

1

sc
F K c

dc

dt L 2^c&K dc

dt L G50. ~B5!

We assume a Gaussian distribution in wake phase of
trapped electrons,

dN

dc0
5

1

A2psc
2

expF2~c02^c0&!2

2sc
2 G , ~B6!

where the expectation value of an arbitrary functionf (c0) is

^ f ~c0!&5E dN

dc0
f ~c0!dc0 . ~B7!

From Eq. ~B3!, the mean energy of the electron bun
assuming a Gaussian distribution in wake phase Eq.~B6! is

^g&5^g0&2f0te2sc
2 /2 sin̂ c0&. ~B8!

Assuming the initial conditionsg0 and c0 are uncorrelated
~statistically independent! such that̂ g0c0&5^g0&^c0&, the
rms energy spreadsg

25^g2&2^g&2 is

sg
25sg0

2 1
1

2
f0

2t2~12e2sc
2
!~11e2sc

2
cos@2^c0&#!.

~B9!

Using Eqs.~B8! and ~B9!, the fractional energy spread is

sg

^g&
5

6Asg0

2 1
f0

2t2

2
~12e2sc

2
!~11e2sc

2
cos@2^c0&#!

^g0&2f0te2sc
2 /2 sin̂ c0&

~B10!

with the asymptotic value~for larget)

sg

^g&
→

A1
2 ~12e2sc

2
!~11e2sc

2
cos@2^c0&#!

e2sc
2 /2 sin̂ c0&

. ~B11!

For sc!1, Eq. ~B11! simplifies to

sg

^g&
.sccot̂ c0&. ~B12!

The asymptotic form of the fractional energy spread E
~B11! has a minimum value at a phase of^c0&5p/2 ~at the
crest of the plasma wake!, @sg /^g&#min→A2 sinh(sc

2/2)
.sc

2/A2. As Eq.~B11! indicates, the asymptotic fractiona
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energy spread is independent of the wake amplitude, an
just a function of the phase and the rms phase spread, w
is constant assuming zero~or constant! phase slippage. Fo
illustration, consider the numerical simulation shown in F
8. Once the bunch becomes highly relativistic,^c&.213.9
and sc.0.17. With these values, the asymptotic fraction
energy spread predicted by Eq.~B12! is @sg /^g&#.0.04, in
good agreement with the numerical simulation Fig. 8~c!.

The normalized longitudinal rms emittance of the trapp
electron bunch is« i

25sg
2sc

22sgc
2 , where sgc5^gc&

2^g&^c&. With the assumptionssc!1 and a Gaussian distri
ns
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bution in phase Eq.~B6!, the normalized longitudinal rms
emittance is

« i
25sg0

2 sc
21

1

2
f0

2t2sc
6 sin̂ c0&. ~B13!

The longitudinal rms emittance of the trapped electron bu
« i grows linearly for larget. This emittance growth is due to
the fact that the bunch becomes relativistic at a wake ph
where the energy gain is nonlinear with respect to the w
phase.
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